Advertisement

Topics

Autologous Peripheral Stem Cell Transplant in Treating Patients With Non-Hodgkin's Lymphoma or Hodgkin's Lymphoma

2014-08-27 03:43:44 | BioPortfolio

Summary

RATIONALE: Drugs used in chemotherapy, such as ifosfamide, etoposide, and carboplatin, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Monoclonal antibodies, such as rituximab, can block cancer growth in different ways. Some block the ability of cancer cells to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. Giving colony-stimulating factors, such as G-CSF, helps stem cells move from the patient's bone marrow to the blood so they can be collected and stored for peripheral stem cell transplant. Giving more chemotherapy, such as cyclophosphamide, carmustine, and etoposide, and total-body irradiation prepares the patient's bone marrow for the stem cell transplant. The stem cells are then returned to the patient to replace the blood-forming cells that were destroyed by the chemotherapy and radiation therapy. More radiation therapy is given after transplant to kill any remaining cancer cells.

PURPOSE: This phase II trial is studying how well autologous peripheral stem cell transplant works in treating patients with non-Hodgkin's lymphoma or Hodgkin's lymphoma.

Description

OBJECTIVES:

Primary

- Determine the disease-free survival and overall survival of patients with non-Hodgkin's or Hodgkin's lymphoma treated with autologous peripheral blood stem cell transplantation (PBSCT).

- Verify the safety and efficacy of autologous PBSCT in patients with HIV disease and relapsed lymphoma.

Secondary

- Evaluate immune reconstitution in HIV-positive patients undergoing autologous PBSCT and compare to immune reconstitution in HIV-negative patients.

- Predict the adequacy of peripheral blood stem cell (PBSC) harvest prior to flow analysis of a PBSC yield.

- Determine the time to engraftment for neutrophils and platelets.

OUTLINE:

- Peripheral blood stem cell (PBSC) mobilization with filgrastim (G-CSF) alone: Patients not requiring further disease reduction receive G-CSF subcutaneously (SC) once daily on days 1-8. Patients undergo PBSC collection by leukapheresis on days 5-8. Patients who do not adequately mobilize with G-CSF alone proceed to chemo-mobilization.

- Chemo-mobilization: Patients requiring further disease reduction receive 1 of 2 chemo-mobilization regimens.

- Patients with CD20+ non-Hodgkin's lymphoma (NHL) or lymphocyte predominant Hodgkin's lymphoma: Patients receive rituximab intravenously (IV) over 6-8 hours on day 1, ifosfamide IV over 2 hours and etoposide IV over 30 minutes on days 2-4, and carboplatin IV over 1 hour on day 2. Patients receive G-CSF SC once daily beginning on day 7 and continuing until leukapheresis is completed. Patients undergo PBSC collection by leukapheresis on days 12-15.

- All other patients: Patients receive ifosfamide IV over 2 hours and etoposide IV over 30 minutes on days 1-3 and carboplatin IV over 1 hour on day 1. Patients receive G-CSF SC once daily beginning on day 5 and continuing until leukapheresis is completed. Patients undergo PBSC collection by leukapheresis on days 12-15.

- Autologous PBSC transplantation (PBSCT) (Patients with NHL undergoing irradiation): Patients receive cyclophosphamide IV over 2 hours on days -7 and -6. Patients undergo total body irradiation (TBI) twice daily on days -4 to -1. Patients undergo autologous PBSCT on day 0. Patients receive G-CSF SC once daily beginning on day 5 and continuing until blood counts recover.

- Autologous PBSCT (Patients with Hodgkin's lymphoma or NHL not undergoing irradiation): Patients receive cyclophosphamide IV over 2 hours on days -6 to -3, carmustine IV over 1 hour on day -6, and etoposide IV over 4 hours twice daily on days -6 to -4. Patients undergo autologous PBSCT on day 0. Patients receive G-CSF SC once daily beginning on day 5 and continuing until blood counts recover.

- Post-transplant irradiation: Patients undergo post-transplant irradiation beginning on day 28. Persisting nodal masses ≥ 2 cm are treated with additional localized external beam irradiation.

After completion of study treatment, patients are followed periodically.

PROJECTED ACCRUAL: A total of 150 patients will be accrued for this study.

Study Design

Allocation: Non-Randomized, Endpoint Classification: Safety/Efficacy Study, Intervention Model: Parallel Assignment, Masking: Open Label, Primary Purpose: Treatment

Conditions

Brain and Central Nervous System Tumors

Intervention

carmustine, cyclophosphamide, etoposide, peripheral blood stem cell transplantation, radiation therapy, G-CSF

Location

Masonic Cancer Center at University of Minnesota
Minneapolis
Minnesota
United States
55455

Status

Recruiting

Source

Masonic Cancer Center, University of Minnesota

Results (where available)

View Results

Links

Published on BioPortfolio: 2014-08-27T03:43:44-0400

Clinical Trials [5243 Associated Clinical Trials listed on BioPortfolio]

Cyclophosphamide W/or W/Out Rituximab and Peripheral Stem Cell Transplantation in Patients With Recurrent Non-Hodgkin's Lymphoma

RATIONALE: Monoclonal antibodies such as rituximab can locate cancer cells and either kill them or deliver cancer-killing substances to them without harming normal cells. Drugs used in che...

Peripheral Stem Cell Transplantation Plus Combination Chemotherapy in Treating Patients With Multiple Myeloma

RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Combining chemotherapy with peripheral stem cell transplantation may...

Peripheral Stem Cell Transplantation in Treating Patients With Non-Hodgkin's Lymphoma or Hodgkin's Disease

RATIONALE: Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. Combining chemotherapy with allogeneic or autologous peripheral ste...

High-Dose Chemotherapy Given Together With Peripheral Blood Stem Cell Transplant in Treating Patients With Intestinal T-Cell Lymphoma

RATIONALE: Giving chemotherapy before a peripheral blood stem cell transplant stops the growth of cancer cells by stopping them from dividing or by killing them. After treatment, stem cell...

Combination Chemotherapy Followed by Peripheral Stem Cell Transplantation in Treating Children With Relapsed Acute Lymphocytic Leukemia

RATIONALE: Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. Combining chemotherapy with peripheral stem cell transplantation ma...

PubMed Articles [26105 Associated PubMed Articles listed on BioPortfolio]

Thiotepa, Etoposide, Cyclophosphamide, Cytarabine, and Melphalan (TECAM) Conditioning Regimen for Autologous Stem Cell Transplantation in Lymphoma.

High-dose chemotherapy and autologous stem cell transplantation (ASCT) is the current standard of care for relapsed non-Hodgkin lymphoma (NHL) and Hodgkin lymphoma (HL). Conditioning regimens with hig...

Autograft immune effector cells and survival in autologous peripheral blood hematopoietic stem cell transplantation.

In addition to stem cells, T-cells, natural killer cells, dendritic cells, and monocytes are also collected and infused from the autograft in patients undergoing autologous peripheral blood hematopoie...

Freezing the graft is not necessary for autotransplants for plasma cell myeloma and lymphomas.

We studied rates of granulocyte and platelets recovery in 359 consecutive subjects receiving blood cell infusions in the context of autotransplants for plasma cell myeloma (N = 216) and lymphomas ...

Improved outcome by optimized conditioning regimens with an increased dose of cyclophosphamide in allogeneic peripheral blood stem cell transplantation for severe aplastic anemia.

Objective: To respectively analyze the impact of conditioning regimens with a dose-decreased cyclophosphamide (Cy) on the outcome in fully matched sibling donor (MSD) peripheral blood stem cell transp...

Efficacy and safety of autologous peripheral blood stem cell transplantation for Philadelphia chromosome-positive acute lymphoblastic leukemia: A study protocol for a multicenter exploratory prospective study (Auto-Ph17 study).

The prognosis of Philadelphia chromosome positive acute lymphoblastic leukemia (Ph + ALL) has been dramatically improved since the introduction of tyrosine kinase inhibitors (TKIs). Although allog...

Medical and Biotech [MESH] Definitions

Transplantation of stem cells collected from the peripheral blood. It is a less invasive alternative to direct marrow harvesting of hematopoietic stem cells. Enrichment of stem cells in peripheral blood can be achieved by inducing mobilization of stem cells from the BONE MARROW.

Transfer of HEMATOPOIETIC STEM CELLS from BONE MARROW or BLOOD between individuals within the same species (TRANSPLANTATION, HOMOLOGOUS) or transfer within the same individual (TRANSPLANTATION, AUTOLOGOUS). Hematopoietic stem cell transplantation has been used as an alternative to BONE MARROW TRANSPLANTATION in the treatment of a variety of neoplasms.

The release of stem cells from the bone marrow into the peripheral blood circulation for the purpose of leukapheresis, prior to stem cell transplantation. Hematopoietic growth factors or chemotherapeutic agents often are used to stimulate the mobilization.

Transplantation of STEM CELLS collected from the fetal blood remaining in the UMBILICAL CORD and the PLACENTA after delivery. Included are the HEMATOPOIETIC STEM CELLS.

A semisynthetic derivative of PODOPHYLLOTOXIN that exhibits antitumor activity. Etoposide inhibits DNA synthesis by forming a complex with topoisomerase II and DNA. This complex induces breaks in double stranded DNA and prevents repair by topoisomerase II binding. Accumulated breaks in DNA prevent entry into the mitotic phase of cell division, and lead to cell death. Etoposide acts primarily in the G2 and S phases of the cell cycle.

More From BioPortfolio on "Autologous Peripheral Stem Cell Transplant in Treating Patients With Non-Hodgkin's Lymphoma or Hodgkin's Lymphoma"

Advertisement
Quick Search
Advertisement
Advertisement

 

Relevant Topics

Head and neck cancers
Cancer can occur in any of the tissues or organs in the head and neck. There are over 30 different places that cancer can develop in the head and neck area. Mouth cancers (oral cancers)  - Mouth cancer can develop on the lip, the tongue, the floor...

Cancer Disease
Cancer is not just one disease but many diseases. There are more than 100 different types of cancer. Most cancers are named for the organ or type of cell in which they start - for example, cancer that begins in the colon is called colon cancer; cancer th...


Searches Linking to this Trial