Advertisement

Topics

Altered and Conventional Fractionated Radiotherapy in Patients With Head and Neck Cancer

2014-07-23 21:46:13 | BioPortfolio

Summary

The aim of our study was to evaluate the value of two different altered fractionation schedules – hyperfractionation and accelerated fractionation with concomitant boost – in comparison with conventional fractionation in primary definitive radiotherapy for squamous cell carcinomas of the larynx, oropharynx or hypopharynx. The study began and was conducted while the only teletherapy unit in our department was the cobalt-60 machine. During that period we were expecting the installation of new sophisticated equipment. We assumed that the results of this study would be also able to show whether or not it would be rational to use the altered fractionation regimens on the new machines.

Description

Eligible patients admitted from March 1999 to December 2000 were treated with conventionally fractionated radiotherapy. These patients represented the retrospective part of the study. Patients admitted between January 2001 and June 2004 were included in the prospective part of the study. Following the confirmation of their eligibility, altered fractionation schedule assignment was made after stratifying by site of origin (larynx vs oropharynx vs hypopharynx), Karnofsky performance score (60%-70% vs 80%-100%), and stage of disease (I and II vs III and IV). Patients were randomized to receive radiotherapy delivered using either hyperfractionation or accelerated fractionation with concomitant boost as a late accelerating component. Exceptions occurred when patients either refused treatment with two daily fractions or were not offered twice-a-day irradiation because of lack of machine time.

Radiotherapy Scheduling and Technique The conventionally fractionated radiotherapy schedule was 66-70 Gy in 6½ -7 weeks (one fraction of 2 Gy per day, 5 fractions per week), whereas the hyperfractionation treatment schedule was 74.4-79.2 Gy in 6.2-7 weeks (two fractions of 1.2 Gy per day, 10 fractions per week with interfraction interval of at least 6 hours; Figure 1). The treatment schedule in accelerated fractionation using concomitant boost consisted of daily fraction of 1.8 Gy, 5 days a week, up to 32.4 Gy including all sites of disease and electively irradiated areas of the neck, followed by two daily fractions for the last 11-12 days. The first daily fraction encompassed all sites of the disease and electively irradiated neck nodes using a dose of 1.8 Gy, and the second daily fraction was the concomitant boost delivered through reduced fields to encompass the gross disease only, using a fraction of 1.5 Gy up to total doses of 68.7-72 Gy in 6 weeks (Figure 1). The interval between the two daily fractions was at least 6 hours.

Study Design

Observational Model: Defined Population, Observational Model: Natural History, Time Perspective: Longitudinal, Time Perspective: Retrospective/Prospective

Conditions

Head and Neck Cancer

Status

Completed

Source

Institute of Radiotherapy and Oncology, Macedonia

Results (where available)

View Results

Links

Published on BioPortfolio: 2014-07-23T21:46:13-0400

Clinical Trials [1566 Associated Clinical Trials listed on BioPortfolio]

Identification and Characterization of Novel Proteins in Head and Neck Cancer

Through this study, we hope to learn more about the mechanisms, which may contribute to development and progression of head and neck cancer. The long-term goal of this study will be to de...

Head and Neck Cancer Registry (LORHAN)

The primary objective of this study is to describe, in detail, patterns of care for head and neck carcinoma patient

A Study of a New Combination and Schedule of Chemotherapy Drugs for the Treatment of Head and Neck Cancer

The purpose of this study is to determine the effectiveness and side effects of a new combination and schedule of chemotherapy drugs in the treatment of head and neck cancer. Patients with...

PET/CT to Image Hypoxia in Head and Neck Tumours

Patients with head and neck cancer will be imaged with PET scan and CT scan in order to determine areas of the tumour that are hypoxic. It is hypothesized that PET /CT will provide inform...

A Phase II Study of Pemetrexed Plus Gemcitabine for Metastatic/Recurrent Head and Neck Cancer (HNSCC)

The purpose of this study is to determine if the combination of 2 chemotherapy drugs called pemetrexed and gemcitabine might be effective treatment for head and neck squamous cell cancer. ...

PubMed Articles [15535 Associated PubMed Articles listed on BioPortfolio]

Change in alcohol and tobacco consumption after a diagnosis of head and neck cancer: Findings from head and neck 5000.

Tobacco and alcohol consumption are risk factors for developing head and neck cancer, and continuation postdiagnosis can adversely affect prognosis. We explored changes to these behaviors after a head...

Physical Therapy Challenges in Head and Neck Cancer.

Treatment sequelae such as trismus, shoulder dysfunction syndrome resulting from spinal accessory nerve palsy, and radiotherapy-induced neck fibrosis are often overlooked when in the management of hea...

Patterns of care and outcomes of adjuvant therapy for high-risk head and neck cancer after surgery.

Postoperative chemoradiotherapy (CRT) is considered standard of care in patients with locally advanced head and neck cancer with positive margins and/or extracapsular extension (ECE).

Justification of routine venous thromboembolism prophylaxis in head and neck cancer reconstructive surgery.

Venous thromboembolism (VTE) is a preventable complication in which early ambulation is expected after head and neck surgery. Thus, the role of VTE prophylaxis is questionable and needs further assess...

Perineural Invasion in Head and Neck Cancer.

Perineural invasion (PNI) is a mechanism of tumor dissemination that can provide a challenge to tumor eradication and that is correlated with poor survival. Squamous cell carcinoma, the most common ty...

Medical and Biotech [MESH] Definitions

Soft tissue tumors or cancer arising from the mucosal surfaces of the LIP; oral cavity; PHARYNX; LARYNX; and cervical esophagus. Other sites included are the NOSE and PARANASAL SINUSES; SALIVARY GLANDS; THYROID GLAND and PARATHYROID GLANDS; and MELANOMA and non-melanoma skin cancers of the head and neck. (from Holland et al., Cancer Medicine, 4th ed, p1651)

Dissection in the neck to remove all disease tissues including cervical LYMPH NODES and to leave an adequate margin of normal tissue. This type of surgery is usually used in tumors or cervical metastases in the head and neck. The prototype of neck dissection is the radical neck dissection described by Crile in 1906.

A form of RHABDOMYOSARCOMA arising primarily in the head and neck, especially the orbit, of children below the age of 10. The cells are smaller than those of other rhabdomyosarcomas and are of two basic cell types: spindle cells and round cells. This cancer is highly sensitive to chemotherapy and has a high cure rate with multi-modality therapy. (From Holland et al., Cancer Medicine, 3d ed, p2188)

A symptom, not a disease, of a twisted neck. In most instances, the head is tipped toward one side and the chin rotated toward the other. The involuntary muscle contractions in the neck region of patients with torticollis can be due to congenital defects, trauma, inflammation, tumors, and neurological or other factors.

Large veins on either side of the root of the neck formed by the junction of the internal jugular and subclavian veins. They drain blood from the head, neck, and upper extremities, and unite to form the superior vena cava.

More From BioPortfolio on "Altered and Conventional Fractionated Radiotherapy in Patients With Head and Neck Cancer"

Advertisement
Quick Search
Advertisement
Advertisement

 

Relevant Topic

Cancer
  Bladder Cancer Brain Cancer Breast Cancer Cancer Cervical Cancer Colorectal Head & Neck Cancers Hodgkin Lymphoma Leukemia Lung Cancer Melanoma Myeloma Ovarian Cancer Pancreatic Cancer ...


Searches Linking to this Trial