Autologous Cell-derived Tissue Engineered Cartilage for Repairing Articular Cartilage Lesions

2016-05-13 00:08:23 | BioPortfolio


This study is aimed at evaluating the feasibility and effectiveness of a completely natural tissue engineered cartilage, composed of a self-made tissue engineered oriented scaffold and autologous chondrocytes, for repairing articular cartilage damage following injury. And it is also aimed at investigating the safety of tissue engineered cartilage transplantation.


Injured articular cartilage has limited capacity for self repair. Without timely, early and effective treatment, damage to the articular cartilage progressively worsens, resulting in joint swelling, pain and dysfunction. The patient ultimately develops osteoarthritis and will be required to undergo artificial joint replacement. Clinical therapy for cartilage damage includes microfracture surgery and autologous osteochondral transplantation. However, the microfracture technique is limited to small-scale damage, and autologous osteochondral transplantation is hindered by limited supply. With advances in material science, cell biology, biomechanics and bioreactor technology, the new generation of biomimetic tissue engineered osteochondral composites display great potential for the repair of cartilage damage.

Currently, in cartilage tissue engineering, seed cells are derived from autologous or allogeneic chondrocytes, mesenchymal stem cells, embryonic stem cells or pluripotent stem cells. Increasing evidence indicates that bone marrow mesenchymal stem cells can be induced to differentiate into chondrocytes, and these cells have been successfully used in the treatment of large-size bone defects, cartilage lesions and spinal cord injury. The quality and quantity of bone mesenchymal stem cells gradually decrease with age, especially in patients with degenerative diseases. Adipose stem cells and umbilical cord mesenchymal stem cells are abundant and have similar characteristics to bone mesenchymal stem cells, and both of these cell types can be induced to differentiate into chondrocytes. Adipose stem cells and umbilical cord mesenchymal stem cells have been used to repair cartilage defects, but the findings are still preliminary, and these cells cannot be harvested or cultured in large quantities. Furthermore, the use of embryonic stem cells is complicated by ethical considerations. As a consequence, autologous chondrocytes are optimal seed cells for cartilage tissue engineering.

The transplantation of autologous chondrocytes in combination with tissue engineered cartilage scaffolds to repair cartilage damage requires researchers to focus on two major issues, namely, (i) the in vitro amplification of chondrocytes and (ii) the preparation of biocompatible chondrocyte scaffolds. The preparation of chondrocyte scaffolds requires advanced technique, and currently, only the Institute of Orthopedics at the Chinese PLA General Hospital has the capacity to produce acellular cartilage; there is no other source of tissue engineered cartilage scaffolds in China.

A proprietary allogeneic acellular cartilage-oriented scaffold was successfully created by the Cartilage Tissue Engineering Research Group, Institute of Orthopedics, Chinese PLA General Hospital (with intellectual property rights). The innovative scaffold simulates the composition and spatial structural characteristics of normal cartilage. The preparation methods are as follows: articular cartilage is pulverized to obtain natural cartilage extracellular matrix, which is identical in biochemical composition to extracellular matrix of natural articular cartilage. Then, a porous sponge-like scaffold is prepared using the freeze-drying technique. In vitro experiments and large-animal articular cartilage injury repair experiments have produced good results. Using this material, our research group prepared biomimetic cartilage tissue engineered scaffolds, which mimic the structural characteristics of natural articular cartilage extracellular matrix. This allogeneic acellular cartilage scaffold has the following characteristics: (1) it is derived from allogeneic cartilage, and the extracellular matrix remains intact after allografting, helping to maintain the numerous components of normal cartilage, particularly type II collagen and proteoglycans, resulting in enhanced repair. Cartilage scaffolds used outside of China are mainly composed of types I and III collagen or hyaluronic acid, and vary greatly from natural cartilage components. The original cartilage structure is difficult to reproduce with these types of scaffolds, and fibrous cartilage may affect treatment outcome. (2) The biomimetic scaffold has a similar three-dimensional structure to that of normal articular cartilage, which is the oriented scaffold structure. The scaffold imitates the orientation of normal cartilage cells, which are arranged perpendicular to the surface, and provides a paratactic columnar structure that contributes to the columnar arrangement of cells. This structure in combination with type II collagen and proteoglycans derived from normal articular cartilage results in a scaffold structure that is extremely close to that of normal joint cartilage. Consequently, the repaired cartilage will have normal structure and function. (3) The oriented scaffold has a good biomechanical property. Its compressive stress is better than the non-oriented scaffold in wet and dry conditions. (4) The oriented scaffold has good biocompatibility. Preliminary experiments have investigated the immune responses of the oriented scaffold of heterogeneous (porcine) and conspecific (rabbit) acellular cartilage. After the oriented scaffold was implanted into the rabbit, its immune responses were observed from the aspects of cellular immunity and humoral immunity. Results suggested that its immunogenicity was low. Thus, it is verified that the oriented scaffold of acellular cartilage has good biocompatibility.

Adverse Events

1. Security Standard operating procedures for adverse events and severe adverse events will be developed to ensure that any adverse reactions during the experiment will be treated quickly to protect the participants.

2. Definitions 2.1 Adverse events Adverse medical events may occur after cartilage transplantation or microfracture surgery, but they do not necessarily have a causal relationship with treatment.

Common adverse reactions after cartilage transplantation include fever, joint pain, swelling and effusion. Common adverse reactions after microfracture surgery include fever, joint pain, joint swelling and effusion.

2.2 The severity of adverse events Adverse events will be classified into three levels: general adverse events, vital adverse events and severe adverse events.

2.3 Relationship with tissue engineered cartilage The correlation between adverse events and tissue-engineered cartilage will be categorized into "definitely related", "probably related", "possibly unrelated", "irrelevant" or "undetermined".

2.4 Severe adverse events All events occurring during the trial requiring hospitalization or prolonged hospitalization, or resulting in disability, or affecting the ability to work, or with a risk of death or life-threatening events will be recorded.

3. Adverse event recording All adverse events during the experiment will be collected until the end of the study.

4. Recording and reporting All adverse events will be recorded by physicians, including description of adverse events, occurrence time, end time, severity, frequency, and treatment record.

Once a severe adverse event occurs, physicians will not only give necessary treatment, but also truthfully report to the local Food and Drug Administration Bureau and the National Food and Drug Administration Bureau within 24 hours, as well as promptly report to the Ethics Committee. The data, treatment and follow-up results will be noted in the report.

5. Follow-up observation of non-severe and severe adverse events If a patient suffers a non-severe adverse event, the course and outcome will be closely monitored. The course of severe adverse events will be recorded in follow-up reports or summary reports. Patients will also be monitored, and observations will be recorded for a period of 30 days after a seizure.

Statistical Analysis

1. Study hypotheses All hypotheses will be evaluated with two-tailed tests. A value of P < 0.05 will be considered statistically significant. Baseline data comparability will be assessed. Two-tailed statistical analysis will be performed with α = 5%.

2. Number of cases A total of 100 patients will be involved in this study and divided into two groups, with 50 cases in each group.

3. Experimental analysis Experimental data will be analyzed using statistical software, SPSS 22.0. Measurement data will be expressed as the mean ± SD, median, maximum, minimum and quartiles; count data will be presented as a percentage (%). Count data between groups will be compared using chi-square test or Fisher exact test. Measurement data between groups will be compared using t-test. Nonparametric variables between groups will be compared using rank sum test.

4. Statistical analysis Statistical analysis will be performed by professional statisticians who will not be involved in the study. All data will be input and reviewed, and a statistical analysis report will be prepared.


1. Preservation of articular cartilage Cartilage tissue will be preserved and transported in a 50 mL centrifuge tube containing 8 mL of tissue preservation solution, placed on a test tube rack on top of an ice pack, at 4 °C under sterile conditions. Cartilage tissue will be transferred to the Institute of Orthopedics at the Chinese PLA General Hospital within 12 hours.

2. Chondrocyte culture and preservation Autologous chondrocytes will be cultured and amplified in strict accordance with the standards and requirements of the National Institutes for Food and Drug Control. All images and data will be recorded. Cartilage seed cells will be frozen in liquid nitrogen.

3. Data quality assurance (1) Researchers will fill in a case report form (CRF) accurately. (2) Inspectors will regularly verify that all data recorded are correct and complete, and that they are consistent with original records, and will be quickly transferred to the data administrator. (3) The data administrator will further examine CRF tables and return the form to the researchers. (4) Two data clerks will input duplicate data into a computer database. (5) The two separate sets of data will be compared by computer software, and modified according to the CRF. (6) Quality control: 5% of all case data will be randomly selected for manual checking. If the data error is greater than 0.15%, all the data in the database will be manually checked.

Study Design

Allocation: Randomized, Endpoint Classification: Safety/Efficacy Study, Intervention Model: Parallel Assignment, Masking: Double Blind (Subject, Investigator), Primary Purpose: Treatment


Cartilage Diseases


biomimetic cartilage matrix + autologous chondrocytes, arthroscopic debridement, microfracture surgery


Active, not recruiting


Chinese PLA General Hospital

Results (where available)

View Results


Published on BioPortfolio: 2016-05-13T00:08:23-0400

Clinical Trials [1022 Associated Clinical Trials listed on BioPortfolio]

Norwegian Cartilage Project - Microfracture

114 patients between 18 and 50 years with an isolated focal cartilage defect in the knee will be randomized to either receive arthroscopic microfracture or arthroscopic debridement. Both g...

Autologous Cartilage Implantation vs Arthroscopic Debridement

82 patients aged 18-49 years with an isolated focal cartilage defect in the knee will be randomized to either receive autologous cartilage implantation or arthroscopic debridement. Both gr...

Comparison of BioCart™II With Microfracture for Treatment of Cartilage Defects of the Femoral Condyle

BioCart™II is a novel scaffold seeded with autologous chondrocytes to be used to repair cartilage lesions of the knee. This study is designed to compare the efficacy and safety of BioCar...

Clinical Study of in Situ Human Knee Cartilage Repair

The trial evaluates the clinical efficacy and safety of acellular bone matrix scaffold to repair cartilage defects of the knee. Half of participants will receive Microfracture with acellul...

Effects of CHONDRON (Autologous Chondrocytes) With Ankle Cartilage Defect

An open clinical trial transplanting CHONDRON (autologous chondrocytes) to ankle cartilage defect patients who are appropriate for the trial, and evaluating the validity and safety for 12 ...

PubMed Articles [4501 Associated PubMed Articles listed on BioPortfolio]

Minimally Manipulated Bone Marrow Concentrate Compared with Microfracture Treatment of Full-Thickness Chondral Defects: A One-Year Study in an Equine Model.

Microfracture is commonly performed for cartilage repair but usually results in fibrocartilage. Microfracture augmented by autologous bone marrow concentrate (BMC) was previously shown to yield struct...

Autologous Matrix-Induced Chondrogenesis: A Systematic Review of the Clinical Evidence.

The addition of a type I/III collagen membrane in cartilage defects treated with microfracture has been advocated for cartilage repair, termed "autologous matrix-induced chondrogenesis" (AMIC).

Microfracture is more cost-effective than autologous chondrocyte implantation: a review of level 1 and level 2 studies with 5 year follow-up.

Focal cartilage defects in the knee may have devastating effect on the knee joint, where two of the main surgical treatment options are microfracture and autologous chondrocyte implantation. Comparati...

Patellofemoral Cartilage Restoration: Indications, Techniques, and Outcomes of Autologous Chondrocytes Implantation, Matrix-Induced Chondrocyte Implantation, and Particulated Juvenile Allograft Cartilage.

Tissue Engineering Auricular Cartilage Using Late Passage Human Auricular Chondrocytes.

The significant shortcomings associated with current autologous reconstructive options for auricular deformities have inspired great interest in a tissue engineering solution. A major obstacle in the ...

Medical and Biotech [MESH] Definitions

A non-vascular form of connective tissue composed of CHONDROCYTES embedded in a matrix that includes CHONDROITIN SULFATE and various types of FIBRILLAR COLLAGEN. There are three major types: HYALINE CARTILAGE; FIBROCARTILAGE; and ELASTIC CARTILAGE.

The formation of cartilage. This process is directed by CHONDROCYTES which continually divide and lay down matrix during development. It is sometimes a precursor to OSTEOGENESIS.

A bone morphogenetic protein that may play a role in CARTILAGE formation. It is a potent regulator of the growth of CHONDROCYTES and the synthesis of cartilage matrix proteins. Evidence for its role in cartilage formation can be seen in MICE, where genetic mutations that cause loss of bone morphogenetic protein 5 function result in the formation of small malformed ears.

A type of CARTILAGE whose matrix contains ELASTIC FIBERS and elastic lamellae, in addition to the normal components of HYALINE CARTILAGE matrix. Elastic cartilage is found in the EXTERNAL EAR; EUSTACHIAN TUBE; EPIGLOTTIS; and LARYNX.

PROTEOGLYCANS-associated proteins that are major components of EXTRACELLULAR MATRIX of various tissues including CARTILAGE; and INTERVERTEBRAL DISC structures. They bind COLLAGEN fibers and contain protein domains that enable oligomer formation and interaction with other extracellular matrix proteins such as CARTILAGE OLIGOMERIC MATRIX PROTEIN.

More From BioPortfolio on "Autologous Cell-derived Tissue Engineered Cartilage for Repairing Articular Cartilage Lesions"

Quick Search


Relevant Topics

Organ transplantation is the moving of an organ from one body to another or from a donor site to another location on the patient's own body, for the purpose of replacing the recipient's damaged or absent organ. The emerging field of regenerative ...

Arthritis Fibromyalgia Gout Lupus Rheumatic Rheumatology is the medical specialty concerned with the diagnosis and management of disease involving joints, tendons, muscles, ligaments and associated structures (Oxford Medical Diction...

Pain is defined by the International Association for the Study of Pain as “an unpleasant sensory and emotional experience associated with actual or potential tissue damage or described in terms of such damage”. Some illnesses can be excruci...

Searches Linking to this Trial