Effect of Positive End-expiratory Pressure on Optimal Balloon Volume During Esophageal Pressure Monitoring

2016-11-30 15:45:13 | BioPortfolio


Esophageal pressure (PES), which has been used as a surrogate for pleural pressure. The volume of esophageal balloon can influence the accuracy of monitoring esophageal pressure. The optimal balloon volume is directly dependent on surrounding pressure. In the present study,the investigators will observe the optimal volume of esophageal balloon during the different PEEP in bench and clinical study.


The esophageal pressure (Pes) is used as a surrogate for pleural pressure to obtain transpulmonary pressure. Catheter with air balloon is the most commonly used method to measure the Pes. The optimal injected volume of the balloon is the key factor in accurate measurement of Pes. The recoil pressure of the balloon turns up while the balloon is over-filled, resulting in over-estimation of the PES; on the other hand, an under-filled balloon also cannot properly transmit the surrounding pressure of balloon. However, the researchers showed the optimal balloon volumes is related to the surrounding pressure and even is not correspond with manufacturer's recommendations. Theoretically, when balloon transmural pressure(PTM) is zero, representing the balloon in a condition with equivalent pressure inside and outside of the balloon, it was defined as optimal volume. However, in clinical settings, it is difficult to determine the balloon PTM, and therefore the optimal volume cannot be obtained, because the surrounding pressure of the balloon cannot be conveniently measured.

In the present study, the investigators will develop a simple method to obtain the optimal balloon volume and observe the effect of positive end-expiratory pressure on optimal balloon volume during esophageal pressure monitoring. The investigators want to validate the accuracy of method in the bench study and clinical feasibility in mechanical ventilated patients.

Study Design

Observational Model: Case-Crossover, Time Perspective: Prospective


Mechanical Ventilation


Positive end-expiratory Pressure


ICU, Beijing Tiantan Hospital, Capital Medical University




Capital Medical University

Results (where available)

View Results


Published on BioPortfolio: 2016-11-30T15:45:13-0500

Clinical Trials [1718 Associated Clinical Trials listed on BioPortfolio]

Mechanical Ventilation in Severe Brain Injury: The Effect of Positive End Expiratory Pressure on Intracranial Pressure

The purpose of this study is to collect physiologic data from patients with severe brain injury who require mechanical ventilation in order to describe the impact of ventilation, specifica...

Expiratory Flow Limitation and Mechanical Ventilation During Cardiopulmonary Bypass in Cardiac Surgery

During general anesthesia a reduction of Functional Residual Capacity (FRC) was observed. The reduction of FRC could imply that respiratory system closing capacity (CC) exceeds the FRC and...

The Efficacy of Breathing Exercise With Oscillated Inspiratory Loading and Oscillated Positive Expiratory Pressure for Airway Secretion Clearance and Lung Function in Intubated Patients, Both With and Without Mechanical Ventilation Dependence

The efficacy of breathing exercise with oscillated inspiratory loading and oscillated positive expiratory pressure for airway secretion clearance and lung function in intubated patients, b...

Screening Expiratory Flow Limitation by Flow-time Curve

Expiratory flow limitation (EFL) is defined as a dynamic condition that expiratory flow cannot be further increased with higher expiratory driving pressure. Under mechanical ventilation, i...

Manual Ventilation Versus Pressure Controlled Mechanical Ventilation in Children

The investigator will compare the feasibility of manual ventilation and pressure-controlled mechanical ventilation during facemask ventilation in children. The hypothesis is that the incid...

PubMed Articles [11552 Associated PubMed Articles listed on BioPortfolio]

Transpulmonary Pressure Describes Lung Morphology During Decremental Positive End-Expiratory Pressure Trials in Obesity.

Atelectasis develops in critically ill obese patients when undergoing mechanical ventilation due to increased pleural pressure. The current study aimed to determine the relationship between transpulmo...

Elevated Mean Airway Pressure and Central Venous Pressure in the First Day of Mechanical Ventilation Indicated Poor Outcome.

The relationship between respiratory mechanical parameters and hemodynamic variables remains unclear. This study was performed to determine whether mean airway pressure and central venous pressure in ...

Fifty Years of Research in ARDS. Respiratory Mechanics in Acute Respiratory Distress Syndrome.

Acute respiratory distress syndrome is a multifactorial lung injury that continues to be associated with high levels of morbidity and mortality. Mechanical ventilation, while lifesaving, is associated...

Treating chronic hypoventilation with automatic adjustable versus fixed EPAP intelligent volume-assured positive airway pressure support (iVAPS); a randomized controlled trial.

New non-invasive ventilation (NIV) modes can automatically adjust pressure support settings to deliver effective ventilation in response to varying ventilation demands. It is recommended that fixed ex...

Effects of the positive end-expiratory pressure increase on sublingual microcirculation in patients with acute respiratory distress syndrome.

The aim of this study was to evaluate the impact of increased positive end-expiratory pressure on the sublingual microcirculation.

Medical and Biotech [MESH] Definitions

Non-therapeutic positive end-expiratory pressure occurring frequently in patients with severe airway obstruction. It can appear with or without the administration of external positive end-expiratory pressure (POSITIVE-PRESSURE RESPIRATION). It presents an important load on the inspiratory muscles which are operating at a mechanical disadvantage due to hyperinflation. Auto-PEEP may cause profound hypotension that should be treated by intravascular volume expansion, increasing the time for expiration, and/or changing from assist mode to intermittent mandatory ventilation mode. (From Harrison's Principles of Internal Medicine, 12th ed, p1127)

Techniques for effecting the transition of the respiratory-failure patient from mechanical ventilation to spontaneous ventilation, while meeting the criteria that tidal volume be above a given threshold (greater than 5 ml/kg), respiratory frequency be below a given count (less than 30 breaths/min), and oxygen partial pressure be above a given threshold (PaO2 greater than 50mm Hg). Weaning studies focus on finding methods to monitor and predict the outcome of mechanical ventilator weaning as well as finding ventilatory support techniques which will facilitate successful weaning. Present methods include intermittent mandatory ventilation, intermittent positive pressure ventilation, and mandatory minute volume ventilation.

A method of mechanical ventilation in which pressure is maintained to increase the volume of gas remaining in the lungs at the end of expiration, thus reducing the shunting of blood through the lungs and improving gas exchange.

Application of positive pressure to the inspiratory phase when the patient has an artificial airway in place and is connected to a ventilator.

Ventilatory support system using frequencies from 60-900 cycles/min or more. Three types of systems have been distinguished on the basis of rates, volumes, and the system used. They are high frequency positive-pressure ventilation (HFPPV); HIGH-FREQUENCY JET VENTILATION; (HFJV); and high-frequency oscillation (HFO).

More From BioPortfolio on "Effect of Positive End-expiratory Pressure on Optimal Balloon Volume During Esophageal Pressure Monitoring"

Quick Search

Searches Linking to this Trial