Prospective Analysis of Cerebral Perfusion Using Head Ultrasound and Multi-source-detector Near Infrared Spectroscopy (NIRS) Imaging

2014-08-27 03:15:23 | BioPortfolio


The purpose of this study is to use an experimental diagnostic tool(NIRS), combined with a known screening tool (cranial ultrasound), to analyze and evaluate cerebral blood flow and oxygenation, and determine if abnormal neurodevelopmental outcomes can be predicted and potentially improved upon in pediatric patients undergoing repair for congenital heart disease.


Purpose: There are 4 objectives for this study.

1. To determine if the use of cranial ultrasound and multi-source-detector near infrared spectroscopy can identify alterations in cerebral perfusion that are associated with long-term neurologic dysfunction.

2. Evaluate whether changes in resistive indices as determined by cranial ultrasound after cardiopulmonary bypass are associated with major neurologic dysfunction.

3. Describe regional changes in brain tissue oxygenation during selective cerebral perfusion using near-infrared spectroscopy and determine if there are critical thresholds that correlate with poor neurologic outcomes. To accomplish this, we will describe differences in cerebral blood flow and oxygenation as related to structural anatomy of the heart. Specifically, we will compare single ventricle and two ventricle hearts with regards to use of cardiopulmonary bypass with or without selective cerebral perfusion. We will also determine if a prolonged reduction in cerebral oxygenation intraoperatively is associated with ultrasound-diagnosed periventricular leukomalacia at discharge.

4. Prospectively collect patients' DNA to determine if differences exist in neurologic outcomes that are associated with genetic variation. Specifically, we will look at simple karyotyping, single nucleotide polymorphisms, and copy number variation differences between patients. This DNA will be collected and stored for future comparison with other children with congenital heart disease who undergo neurodevelopmental testing.


The incidence of congenital heart disease is at least 10 per 1000 live born children and children with congenital heart disease are at high risk for developing neurologic abnormalities1. Patients with a single ventricle have a mean full scale IQ between 89-97 and the incidence of severe mental retardation in hypoplastic left heart syndrome is as high as 18%2, 3. The factors influencing this risk are multiple and include preoperative, intraoperative, and postoperative events. One major risk factor is the use of deep hypothermic circulatory arrest (DHCA), which has historically been employed to obtain a bloodless operating field for aortic arch reconstruction. Since it is becoming increasingly evident that there is no safe duration of DHCA, newly developed strategies are aimed at maximizing cerebral blood flow and thereby improving neurologic outcomes4-7. One such strategy that has been widely employed is selective cerebral perfusion (SCP), which increases cerebral blood flow via a dedicated brain cannula advanced into the right common carotid artery during aortic arch reconstruction.8 This technique, which decreases the period of cerebral ischemia, has been shown in animal models to improve neurologic outcome, but similar studies have not been performed in humans9.

It is known that cerebral vascular resistance is increased after DHCA and it has been suggested that SCP may contribute to post-bypass cerebral vascular hypertension10, 11. Single channel near-infrared spectroscopy (NIRS) measurements have been shown to correlate with cerebral blood flow in animal models, but evaluation of SCP with multi-site-detector NIRS has not been performed, and it is unknown if there are regional oxygenation differences12, 13. This study would provide important information on the cerebral blood flow characteristics of regional tissue, particularly as it relates to unilateral perfusion as well as differences in patients with complex anatomy and compromised cerebral blood flow.

Cranial ultrasound with Doppler resistance measurements have been used to predict hypoxic ischemic encephalopathy in term and preterm infants14-16. It is known that infants with severe congenital heart disease have abnormal cerebral blood flow, particularly those with single ventricles, and that this puts them at increased risk for periventricular leukomalacia17-19. It is not clear, however, if these measurements are associated with adverse neurodevelopmental outcomes, and whether they can be used in combination with NIRS to provide bedside information on neurologic health and adequacy of current hemodynamic management.

While NIRS has been demonstrated to be associated with new or worsened ischemia on postoperative magnetic resonance imaging (MRI), it is often the case that these infants are not stable enough for the risks inherent in obtaining an MRI, including transport and sedation, and ultrasound may serve as an appropriate, safer, screening tool20, 21. We propose to use an experimental continuous diagnostic modality (NIRS), combined with a known screening tool (cranial ultrasound), to analyze and evaluate cerebral blood flow and oxygenation, and determine if abnormal neurodevelopmental outcomes can be predicted and potentially improved upon. The optimal timing of ultrasound performance is not known, and thus it is important to obtain pilot data to refine a diagnostic combination to best assess the risk of neurologic injury.

Another well known risk factor for poor neurologic outcome in children with congenital heart disease is genetics22. Single gene polymorphisms have been identified and associated with poor neurodevelopmental outcomes and more are being identified23. Further study needs to be done to better understand the genetic keys to congenital heart disease and the neurologic outcomes that result because of it.

This is a single center, prospective analysis of cerebral perfusion in infants up to 2 months of age who are undergoing repair of congenital heart disease. A total of 70 subjects will be consented on this protocol with the hopes that 60 will complete the study. Subjects will be expected to participate in the study for a total of 6 years, from enrollment to the final neurocognitive assessment. Subjects will receive $25 for the 12 month follow-up evaluation, $50 for the three year evaluation, and $75 for the 6 year evaluation as patient incentive.

Infants (up to 2 months) with congenital heart disease that undergo surgery at Children's Medical Center Dallas (CMCD) will be eligible. All such patients will receive standard pre-, intra-, and post-operative care.

Enrolled patients will undergo a pre-operative head ultrasound to determine resistive indices and Doppler flow of the middle cerebral artery. Patients will then have a multi-source-detector NIRS device placed on the scalp which will be held in place with Velcro. The probes are attached to wires that are connected to a data collection computer. This device will collect data intra-operatively about regional tissue oxygenation and blood flow and compare many different areas of the brain. A second head ultrasound will be obtained in the immediate post-operative period to determine resistive indices and Doppler flow (within 4 hours). Finally, a third head ultrasound will be performed within 48 hours of discharge to screen for periventricular leukomalacia, or injury to the brain's white matter. These examinations are not painful and produce no additional burden on the patient.

These diagnostic tests are part of a research process and are not standard of care. Single channel NIRS monitoring is standard of care and will be performed as it usually is.

Neurodevelopmental status will be assessed by a trained pediatric neuropsychologist at 12 months of age. The Bayley Scales of Infant and Toddler Development will be performed at the 12 month evaluation (2 hours). The Wechsler Preschool and Primary Scales of Intelligence will be performed at the 3 year evaluation (2 hours). The Children's Memory Scales, the Beery Visual-Motor Integration Tests, the Child Behavior Checklists, and the Woodcock Johnson Tests of Language Proficiency will be performed at the 6 year evaluation (3 hours). These tests are not considered standard of care for these patients, but can provide important information about learning disabilities and school performance.

Additionally, the subject will have the option to consent to providing a DNA sample. If the subject does consent, one sample of blood will be collected by a doctor, nurse, or licensed technician. We will take up to 30ml of blood to be collected on the day of the surgery from an already existing line. These samples will be drawn in accordance with CMCD's maximum blood sampling volume policies. The samples will be completely de-identified and assigned a unique two digit identifier prior to being sent to the Kernie lab at UTSW for extraction and analysis. This sample will be stored in a database to compare with future study subjects with congenital heart disease. This blood draw will occur through an already existing line (necessary for surgery) and will not add additional burden on the patient. Genetic testing may include analysis of single nucleotide polymorphisms, copy number variation, and simple karyotyping. Correlation with type of congenital heart disease, results of neurodevelopmental exams, and imaging results will be made with DNA results.

Study Design

Observational Model: Cohort, Time Perspective: Prospective


Congenital Heart Disease


Children's Medical Center Dallas
United States


Not yet recruiting


University of Texas Southwestern Medical Center

Results (where available)

View Results


Published on BioPortfolio: 2014-08-27T03:15:23-0400

Clinical Trials [1957 Associated Clinical Trials listed on BioPortfolio]

Congenital Heart Disease Research Registry

The Congenital Heart Disease Research Registry (CHDRR) is a program dedicated to understanding the etiology and improving the treatment of Congenital Heart Disease (CHD). This Registry wil...

Risk Factors for Acquired Cardiovascular Disease in Adults With Congenital Heart Disease

This research study is to determine the risk factors for acquired heart disease, in adults with congenital heart disease. This knowledge is important to develop and target ways to prevent...

Heart Failure in Adult Patients With a History of Congenital Heart Disease

In today's world of advanced surgery, children born with congenital heart disease (CHD) are surviving into adulthood. However, the surgical procedures these children undergo do not cure th...

Coxsackie Virus in Pregnancy and Congenital Heart Disease

Investigators would like to find out if a woman's exposure to Coxsackievirus has an effect or increase in incidence of babies being born with congenital heart disease(CHD)

Neurodevelopmental Disorders in Children With Congenital Heart Disease

Children with congenital heart disease are at risk for neurodevelopmental disorders that will impact their quality of life and their integration into society. The aim of this study is to ...

PubMed Articles [18760 Associated PubMed Articles listed on BioPortfolio]

Hospital resource utilization and presence of advance directives at the end of life for adults with congenital heart disease.

Overall health care resource utilization by adults with congenital heart disease has increased dramatically in the past two decades, yet little is known about utilization patterns at the end of life. ...

Genetic Basis for Congenital Heart Disease: Revisited: A Scientific Statement From the American Heart Association.

This review provides an updated summary of the state of our knowledge of the genetic contributions to the pathogenesis of congenital heart disease. Since 2007, when the initial American Heart Associat...

Bioelectrical impedance analysis in the management of heart failure in adult patients with congenital heart disease.

The recognition of fluid retention is critical in treating heart failure (HF). Bioelectrical impedance analysis (BIA) is a well-known noninvasive method; however, data on its role in managing patients...

Heart or heart-lung transplantation for patients with congenital heart disease in England.

Increased longevity in patients with congenital heart disease (CHD) is associated with late complications, mainly heart failure, which may not be amenable to redo surgery and become refractory to medi...

Prospective cohort study of C-reactive protein as a predictor of clinical events in adults with congenital heart disease: results of the Boston adult congenital heart disease biobank.

Despite the well-defined association of high-sensitivity hsCRP with cardiovascular outcomes in apparently healthy adults and those with acquired heart disease, the relevance of this inflammatory marke...

Medical and Biotech [MESH] Definitions

Cardiac manifestation of systemic rheumatological conditions, such as RHEUMATIC FEVER. Rheumatic heart disease can involve any part the heart, most often the HEART VALVES and the ENDOCARDIUM.

Occlusion of the outflow tract in either the LEFT VENTRICLE or the RIGHT VENTRICLE of the heart. This may result from CONGENITAL HEART DEFECTS, predisposing heart diseases, complications of surgery, or HEART NEOPLASMS.

A congenital coronary vessel anomaly in which the left main CORONARY ARTERY originates from the PULMONARY ARTERY instead of from AORTA. The congenital heart defect typically results in coronary artery FISTULA; LEFT-SIDED HEART FAILURE and MITRAL VALVE INSUFFICIENCY during the first months of life.

Disease-related laceration or tearing of tissues of the heart, including the free-wall MYOCARDIUM; HEART SEPTUM; PAPILLARY MUSCLES; CHORDAE TENDINEAE; and any of the HEART VALVES. Pathological rupture usually results from myocardial infarction (HEART RUPTURE, POST-INFARCTION).

Inflammation of the ENDOCARDIUM caused by BACTERIA that entered the bloodstream. The strains of bacteria vary with predisposing factors, such as CONGENITAL HEART DEFECTS; HEART VALVE DISEASES; HEART VALVE PROSTHESIS IMPLANTATION; or intravenous drug use.

More From BioPortfolio on "Prospective Analysis of Cerebral Perfusion Using Head Ultrasound and Multi-source-detector Near Infrared Spectroscopy (NIRS) Imaging"

Quick Search


Relevant Topics

Radiology is the branch of medicine that studies imaging of the body; X-ray (basic, angiography, barium swallows), ultrasound, MRI, CT and PET. These imaging techniques can be used to diagnose, but also to treat a range of conditions, by allowing visuali...

Pediatrics is the general medicine of childhood. Because of the developmental processes (psychological and physical) of childhood, the involvement of parents, and the social management of conditions at home and at school, pediatrics is a specialty. With ...

Cardiology is a specialty of internal medicine.  Cardiac electrophysiology : Study of the electrical properties and conduction diseases of the heart. Echocardiography : The use of ultrasound to study the mechanical function/physics of the h...

Searches Linking to this Trial