Advertisement

Topics

NAV-ALI: Neurally Adjusted Ventilatory Assist in Patients Recovering Spontaneous Breathing After Acute Lung Injury

2014-07-23 21:13:34 | BioPortfolio

Summary

Evaluation of a new ventilatory mode Neurally Adjusted Ventilatory Assist "NAVA" in patients who recover spontaneous breathing after acute lung injury.

Description

Physiological evaluation of two modes of mechanical ventilation: Neurally Adjusted Ventilatory Assist (NAVA) vs Pressure Support Ventilation, at different levels of ventilator assistance.

Evaluation in term of physiological parameters: Tidal volume, Respiratory rate, Inspiratory effort, PaCO2, evaluation of subject-ventilator synchrony.

Evaluation of physiological response to varying levels of ventilator assistance.

Study Design

Allocation: Randomized, Control: Active Control, Endpoint Classification: Safety/Efficacy Study, Intervention Model: Parallel Assignment, Masking: Open Label, Primary Purpose: Basic Science

Conditions

Acute Lung Injury

Intervention

PSV - pressure suppot ventilation, NAVA - Neurally Adjusted Ventilatory Assist, NAVA - EMG

Location

CHU de CAEN
Caen
France
14000

Status

Completed

Source

University Hospital, Caen

Results (where available)

View Results

Links

Published on BioPortfolio: 2014-07-23T21:13:34-0400

Clinical Trials [1620 Associated Clinical Trials listed on BioPortfolio]

The Use of Neurally Adjusted Ventilatory Assist (NAVA) Versus Pressure Support During Asynchrony in Children

The aim of the current study is to compare the application neurally adjusted ventilatory assist (NAVA) to optimize pressure support ventilation in 12 pediatric patients.

Neurally Adjusted Ventilatory Assist (NAVA) in Patients With Critical Illness Associated Polyneuropathy / or Polymyopathy (CIP/M)

Neurally adjusted ventilatory assist (NAVA) is a new concept of mechanical ventilation. NAVA delivers assist to spontaneous breathing based on the detection of the electrical activity of t...

Neurally Adjusted Ventilatory Assist (NAVA) in Ventilatory Care of Premature Infants

The purpose of this study is to find out, whetehr it is possible to improve the ventilatory care of premature infants by using Neurally adjusted ventilatory assist (NAVA). Investigators s...

Non-invasive Neurally Adjusted Ventilatory Assist in Healthy Volunteers

Neurally adjusted ventilatory assist (NAVA) is a new concept of mechanical ventilation. NAVA delivers assistance to spontaneous breathing based on the detection of the electrical activity ...

Neurally Adjusted Ventilatory Assist for Non Invasive Ventilation and Patient-ventilator Interaction

The present study aims to compare various parameters reflecting patient-ventilator synchrony during standard pressure support (PS) and Neurally Adjusted Ventilatory assist (NAVA) in a grou...

PubMed Articles [6014 Associated PubMed Articles listed on BioPortfolio]

Standardized Unloading of Respiratory Muscles during Neurally Adjusted Ventilatory Assist: A Randomized Crossover Pilot Study.

WHAT THIS ARTICLE TELLS US THAT IS NEW: BACKGROUND:: Currently, there is no standardized method to set the support level in neurally adjusted ventilatory assist (NAVA). The primary aim was to explore ...

Neurally adjusted ventilatory assist in extremely low birth weight infants.

Neurally adjusted ventilatory assist (NAVA) is expected to improve respiratory outcomes in preterm infants; however, it has not yet been evaluated. We investigated whether NAVA could improve respirato...

Patient-ventilator asynchrony.

Patient-v entilator asynchrony (PVA) is a mismatch between the patient, regarding time, flow, volume, or pressure demands of the patient respiratory system, and the ventilator, which supplies such dem...

Evaluating the Cost-Effectiveness of Proportional-Assist Ventilation Plus vs. Pressure Support Ventilation in the Intensive Care Unit in Two Countries.

Mechanical ventilation is an integral, but expensive, part of the intensive care unit (ICU). Optimal use of mechanical ventilation could save costs and improve patient outcomes. Here, the cost effecti...

The effect of water immersion and acute hypercapnia on ventilatory sensitivity and cerebrovascular reactivity.

The partial pressure of end tidal carbon dioxide (PETCO ), ventilatory sensitivity to CO , and cerebral perfusion are augmented during thermoneutral head out water immersion (HOWI). We tested the hypo...

Medical and Biotech [MESH] Definitions

Ventilatory support system using frequencies from 60-900 cycles/min or more. Three types of systems have been distinguished on the basis of rates, volumes, and the system used. They are high frequency positive-pressure ventilation (HFPPV); HIGH-FREQUENCY JET VENTILATION; (HFJV); and high-frequency oscillation (HFO).

Techniques for effecting the transition of the respiratory-failure patient from mechanical ventilation to spontaneous ventilation, while meeting the criteria that tidal volume be above a given threshold (greater than 5 ml/kg), respiratory frequency be below a given count (less than 30 breaths/min), and oxygen partial pressure be above a given threshold (PaO2 greater than 50mm Hg). Weaning studies focus on finding methods to monitor and predict the outcome of mechanical ventilator weaning as well as finding ventilatory support techniques which will facilitate successful weaning. Present methods include intermittent mandatory ventilation, intermittent positive pressure ventilation, and mandatory minute volume ventilation.

Mechanical ventilation delivered to match the patient's efforts in breathing as detected by the interactive ventilation device.

Non-therapeutic positive end-expiratory pressure occurring frequently in patients with severe airway obstruction. It can appear with or without the administration of external positive end-expiratory pressure (POSITIVE-PRESSURE RESPIRATION). It presents an important load on the inspiratory muscles which are operating at a mechanical disadvantage due to hyperinflation. Auto-PEEP may cause profound hypotension that should be treated by intravascular volume expansion, increasing the time for expiration, and/or changing from assist mode to intermittent mandatory ventilation mode. (From Harrison's Principles of Internal Medicine, 12th ed, p1127)

Body ventilators that assist ventilation by applying intermittent subatmospheric pressure around the thorax, abdomen, or airway and periodically expand the chest wall and inflate the lungs. They are relatively simple to operate and do not require tracheostomy. These devices include the tank ventilators ("iron lung"), Portalung, Pneumowrap, and chest cuirass ("tortoise shell").

More From BioPortfolio on "NAV-ALI: Neurally Adjusted Ventilatory Assist in Patients Recovering Spontaneous Breathing After Acute Lung Injury"

Advertisement
Quick Search
Advertisement
Advertisement

 

Relevant Topics

Pulmonary
Pulmonary relating to or associated with the lungs eg Asthma, chronic bronchitis, emphysema, COPD, Cystic Fibrosis, Influenza,  Lung Cancer, Pneumonia, Pulmonary Arterial Hypertension, Sleep Disorders etc Follow and track Lung Cancer News ...

Respiratory
Asthma COPD Cystic Fibrosis Pneumonia Pulmonary Medicine Respiratory Respiratory tract infections (RTIs) are any infection of the sinuses, throat, airways or lungs.  They're usually caused by viruses, but they can also ...


Searches Linking to this Trial