Advertisement

Topics

Mitotic progression following DNA damage enables pattern recognition within micronuclei

06:08 EDT 1 Aug 2017 | Nature Publishing

Inflammatory gene expression following genotoxic cancer therapy is well documented, yet the events underlying its induction remain poorly understood. Inflammatory cytokines modify the tumour microenvironment by recruiting immune cells and are critical for both local and systemic (abscopal) tumour responses to radiotherapy. A poorly understood feature of these responses is the delayed onset (days), in contrast to the acute DNA-damage responses that occur in minutes to hours. Such dichotomous kinetics implicate additional rate-limiting steps that are essential for DNA-damage-induced inflammation. Here we show that cell cycle progression through mitosis following double-stranded DNA breaks leads to the formation of micronuclei, which precede activation of inflammatory signalling and are a repository for the pattern-recognition receptor cyclic GMP–AMP synthase (cGAS). Inhibiting progression through mitosis or loss of pattern recognition by stimulator of interferon genes (STING)–cGAS impaired interferon signalling. Moreover, STING loss prevented the regression of abscopal tumours in the context of ionizing radiation and immune checkpoint blockade in vivo. These findings implicate temporal modulation of the cell cycle as an important consideration in the context of therapeutic strategies that combine genotoxic agents with immune checkpoint blockade.

Original Article: Mitotic progression following DNA damage enables pattern recognition within micronuclei

NEXT ARTICLE

More From BioPortfolio on "Mitotic progression following DNA damage enables pattern recognition within micronuclei"

Quick Search
Advertisement
 

Relevant Topics

Gene Expression
The process of gene expression is used by eukaryotes, prokaryotes, and viruses to generate the macromolecular machinery for life. Steps in the gene expression process may be modulated, including the transcription, RNA splicing, translation, and post-tran...

Cancer Disease
Cancer is not just one disease but many diseases. There are more than 100 different types of cancer. Most cancers are named for the organ or type of cell in which they start - for example, cancer that begins in the colon is called colon cancer; cancer th...

Biological Therapy
Biological therapy involves the use of living organisms, substances derived from living organisms, or laboratory-produced versions of such substances to treat disease. Some biological therapies for cancer use vaccines or bacteria to stimulate the body&rs...