Advertise here Publish your press releases here Sponsor BioPortfolio
Follow us on Twitter Sign up for daily news and research emails Contributors wanted

Quantification of fractional flow reserve based on angiographic image data.

23:51 EDT 23rd April 2014 | BioPortfolio

Summary of "Quantification of fractional flow reserve based on angiographic image data."

Coronary angiography provides excellent visualization of coronary arteries, but has limitations in assessing the clinical significance of a coronary stenosis. Fractional flow reserve (FFR) has been shown to be reliable in discerning stenoses responsible for inducible ischemia. The purpose of this study is to validate a technique for FFR quantification using angiographic image data. The study was carried out on 10 anesthetized, closed-chest swine using angioplasty balloon catheters to produce partial occlusion. Angiography based FFR was calculated from an angiographically measured ratio of coronary blood flow to arterial lumen volume. Pressure-based FFR was measured from a ratio of distal coronary pressure to aortic pressure. Pressure-wire measurements of FFR (FFR( P )) correlated linearly with angiographic volume-derived measurements of FFR (FFR( V )) according to the equation: FFR( P ) = 0.41 FFR( V ) + 0.52 (P-value < 0.001). The correlation coefficient and standard error of estimate were 0.85 and 0.07, respectively. This is the first study to provide an angiographic method to quantify FFR in swine. Angiographic FFR can potentially provide an assessment of the physiological severity of a coronary stenosis during routine diagnostic cardiac catheterization without a need to cross a stenosis with a pressure-wire.


Department of Radiological Sciences, Medical Sciences I, B-140, University of California, Irvine, CA, 92697, USA.

Journal Details

This article was published in the following journal.

Name: The international journal of cardiovascular imaging
ISSN: 1875-8312


PubMed Articles [20561 Associated PubMed Articles listed on BioPortfolio]

Evolving concepts of angiogram: fractional flow reserve discordances in 4000 coronary stenoses.

The present analysis addresses the potential clinical and physiologic significance of discordance in severity of coronary artery disease between the angiogram and fractional flow reserve (FFR) in a la...

Invasive and non-invasive fractional flow reserve index in validation of hemodynamic severity of intracoronary lesions.

This review discusses visual and functional evaluation of the hemodynamic significance of the degree of stenosis in coronary angiography, with respect to the indications for revascularization. The con...

Intracoronary versus intravenous adenosine-induced maximal coronary hyperemia for fractional flow reserve measurements.

Maximal hyperemia is the critical prerequisite for fractional flow reserve (FFR) assessment. Despite intravenous (IV) adenosine currently being the recommended approach, intracoronary (IC) administrat...

Support vector machine learning-based cerebral blood flow quantification for arterial spin labeling MRI.

Purpose: To develop a multivariate machine learning classification-based cerebral blood flow (CBF) quantification method for arterial spin labeling (ASL) perfusion MRI. Methods: The label and control...

Prevalence of visual-functional mismatch regarding coronary artery stenosis in the CVIT-DEFER registry.

The fractional flow reserve (FFR) is considered to be a reliable index for the assessment of clinically relevant coronary artery stenosis. However, mismatch in assessing the severity of coronary steno...

Clinical Trials [3425 Associated Clinical Trials listed on BioPortfolio]

Comparison of Fractional Flow Reserve and Intravascular Ultrasound

This study will evaluate the relationship of Fractional Flow Reserve (FFR) and Minimal Lumen Area (MLA) by IntraVascular UltraSound (IVUS) by comparing the results of the both tests which...

Regadenoson to Achieve Maximal Hyperemia for Fractional Flow Reserve in the Catheterization Lab

The purpose of this study is to determine if regadenoson is as safe and effective as adenosine when used in the cardiac catheterization lab during measurement of coronary flow reserve and...

Performing Fractional Flow Reserve Without Anticoagulation During Diagnostic Catheterization

The purpose of this study is to assess the safety of performing fractional flow reserve (FFR) of the myocardium without using anticoagulation by performing a retrospective review of 100 co...

Proper Fractional Flow Reserve Criteria for Intermediate Lesions in the Era of Drug-Eluting Stent

Angiographic evaluation for intermediate lesions is not always accurate. Fractional flow reserve-guided deferral strategy for these lesions showed the same event rate as routine interventi...

Virtual Coronary Intervention and Non-invasive Fractional Flow Reserve (FFR)

The investigators examined the feasibility of treatment planning using virtual coronary revascularization and fractional flow reserve (FFR) CT before the invasive procedures.

Medical and Biotech [MESH] Definitions

The ratio of maximum blood flow to the MYOCARDIUM with CORONARY STENOSIS present, to the maximum equivalent blood flow without stenosis. The measurement is commonly used to verify borderline stenosis of CORONARY ARTERIES.

Information application based on a variety of coding methods to minimize the amount of data to be stored, retrieved, or transmitted. Data compression can be applied to various forms of data, such as images and signals. It is used to reduce costs and increase efficiency in the maintenance of large volumes of data.

Ultrasonography applying the Doppler effect, with the superposition of flow information as colors on a gray scale in a real-time image. This type of ultrasonography is well-suited to identifying the location of high-velocity flow (such as in a stenosis) or of mapping the extent of flow in a certain region.

Signal and data processing method that uses decomposition of wavelets to approximate, estimate, or compress signals with finite time and frequency domains. It represents a signal or data in terms of a fast decaying wavelet series from the original prototype wavelet, called the mother wavelet. This mathematical algorithm has been adopted widely in biomedical disciplines for data and signal processing in noise removal and audio/image compression (e.g., EEG and MRI).

A method of delineating blood vessels by subtracting a tissue background image from an image of tissue plus intravascular contrast material that attenuates the X-ray photons. The background image is determined from a digitized image taken a few moments before injection of the contrast material. The resulting angiogram is a high-contrast image of the vessel. This subtraction technique allows extraction of a high-intensity signal from the superimposed background information. The image is thus the result of the differential absorption of X-rays by different tissues.

Search BioPortfolio: