Molecular tweezers: concepts and applications.

22:12 EDT 21st September 2014 | BioPortfolio

Summary of "Molecular tweezers: concepts and applications."

Taken to the molecular level, the concept of "tweezers" opens a rich and fascinating field at the convergence of molecular recognition, biomimetic chemistry and nanomachines. Composed of a spacer bridging two interaction sites, the behaviour of molecular tweezers is strongly influenced by the flexibility of their spacer. Operating through an "induced-fit" recognition mechanism, flexible molecular tweezers select the conformation(s) most appropriate for substrate binding. Their adaptability allows them to be used in a variety of binding modes and they have found applications in chirality signalling. Rigid spacers, on the contrary, display a limited number of binding states, which lead to selective and strong substrate binding following a "lock and key" model. Exquisite selectivity may be expressed with substrates as varied as C(60) , nanotubes and natural cofactors, and applications to molecular electronics and enzyme inhibition are emerging. At the crossroad between flexible and rigid spacers, stimulus-responsive molecular tweezers controlled by ionic, redox or light triggers belong to the realm of molecular machines, and, applied to molecular tweezing, open doors to the selective binding, transport and release of their cargo. Applications to controlled drug delivery are already appearing. The past 30 years have seen the birth of molecular tweezers; the next many years to come will surely see them blooming in exciting applications.

Affiliation

Faculté de Pharmacie, Université de Montréal, PO Box 6128 Downtown Station, Montréal, QC, H3C 3J7 (Canada).

Journal Details

This article was published in the following journal.

Name: Chemphyschem : a European journal of chemical physics and physical chemistry
ISSN: 1439-7641
Pages: 1043-51

Links

PubMed Articles [12713 Associated PubMed Articles listed on BioPortfolio]

Nanomanipulation of Single RNA Molecules by Optical Tweezers.

A large portion of the human genome is transcribed but not translated. In this post genomic era, regulatory functions of RNA have been shown to be increasingly important. As RNA function often depends...

Methods and Applications for Visualization of SNOMED CT Concept Sets.

Inconsistent use of SNOMED CT concepts may reduce comparability of information in health information systems. Terminology implementation should be approached by common strategies for navigating and se...

Quantification of Topological Coupling between DNA Superhelicity and G-quadruplex Formation.

DNA secondary structures such as G-quadruplex offer unprecedented opportunity to modulate fundamental transcription and replication processes. New transcription modulations can be achieved via the top...

Phenylboronic Acids-based Diagnostic and Therapeutic Applications.

Phenylboronic acid (PBA) derivatives are known to form reversible complexes with polyols, including sugars. This unique chemistry has provided many useful molecular bases for analytical and therapeuti...

Immunoglobulin and T Cell Receptor Genes: IMGT(®) and the Birth and Rise of Immunoinformatics.

IMGT(®), the international ImMunoGeneTics information system(®) (1), (CNRS and Université Montpellier 2) is the global reference in immunogenetics and immunoinformatics. By its creation in 1989, IM...

Clinical Trials [641 Associated Clinical Trials listed on BioPortfolio]

Development of Applications of the Given® Diagnostic System and Evaluation of Their Performance

The purpose of this study is to support the development of Given® Diagnostic System applications.

Precision of the Magnetocardiographer for Data Aquision and Analysis.

magnetocardiography has been extensively studied focusing on the possible clinical applications of the device. Evaluating the precision of a device is a prerequisite condition to know wha...

Validation of a Molecular Prognostic Test for Eye Melanoma

Up to half of patients with ocular melanoma (also called iris, choroidal or uveal melanoma) develop metastasis. We have found that certain molecular features of the eye tumor can be detect...

Pilot Study Using Molecular Profiling to Find Potential Targets and Select Treatments for Patients With Metastatic Breast Cancer.

The purpose of this study is to determine the response rate, that is the % of patients with non-progression of their metastatic breast cancer after 4 months on treatment that was selected ...

Comparison of MRI and Molecular Breast Imaging in Breast Diagnostic Evaluation

The purpose of this study is to determine the sensitivity of Molecular Breast Imaging (MBI) relative to MRI of the breast in patients undergoing MRI for a clinical concern, or abnormal dia...

Medical and Biotech [MESH] Definitions

A technique that uses LASERS to trap, image, and manipulate small objects (biomolecules, supramolecular assembles, DENDRIMERS) in three dimensional space. (From Glossary of Biotechnology and Nanobiotechnology Terms, 4th ed.)

A methodology for chemically synthesizing polymer molds of specific molecules or recognition sites of specific molecules. Applications for molecularly imprinted polymers (MIPs) include separations, assays and biosensors, and catalysis.

The application of scientific knowledge or technology to the field of radiology. The applications center mostly around x-ray or radioisotopes for diagnostic and therapeutic purposes but the technological applications of any radiation or radiologic procedure is within the scope of radiologic technology.

The application of molecular biology to the answering of epidemiological questions. The examination of patterns of changes in DNA to implicate particular carcinogens and the use of molecular markers to predict which individuals are at highest risk for a disease are common examples.

Evolution at the molecular level of DNA sequences and proteins. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed)

Search BioPortfolio:
Loading