Advertisement
Advertise here Publish your press releases here Sponsor BioPortfolio
Follow us on Twitter Sign up for daily news and research emails Contributors wanted

Comparison of hexahedral and tetrahedral elements in finite element analysis of the foot and footwear.

12:06 EDT 20th April 2014 | BioPortfolio

Summary of "Comparison of hexahedral and tetrahedral elements in finite element analysis of the foot and footwear."

Finite element analysis has been widely used in the field of foot and footwear biomechanics to determine plantar pressures as well as stresses and strains within soft tissue and footwear materials. When dealing with anatomical structures such as the foot, hexahedral mesh generation accounts for most of the model development time due to geometric complexities imposed by branching and embedded structures. Tetrahedral meshing, which can be more easily automated, has been the approach of choice to date in foot and footwear biomechanics. Here we use the nonlinear finite element program Abaqus (Simulia, Providence, RI) to examine the advantages and disadvantages of tetrahedral and hexahedral elements under compression and shear loading, material incompressibility, and frictional contact conditions, which are commonly seen in foot and footwear biomechanics. This study demonstrated that for a range of simulation conditions, hybrid hexahedral elements (Abaqus C3D8H) consistently performed well while hybrid linear tetrahedral elements (Abaqus C3D4H) performed poorly. On the other hand, enhanced quadratic tetrahedral elements with improved stress visualization (Abaqus C3D10I) performed as well as the hybrid hexahedral elements in terms of contact pressure and contact shear stress predictions. Although the enhanced quadratic tetrahedral element simulations were computationally expensive compared to hexahedral element simulations in both barefoot and footwear conditions, the enhanced quadratic tetrahedral element formulation seems to be very promising for foot and footwear applications as a result of decreased labor and expedited model development, all related to facilitated mesh generation.

Affiliation

Department of Orthopaedics and Sports Medicine, BB 1065D, 1959 NE Pacific Street, Box 356500, Seattle, WA 98195-6500, USA.

Journal Details

This article was published in the following journal.

Name: Journal of biomechanics
ISSN: 1873-2380
Pages: 2337-43

Links

PubMed Articles [11783 Associated PubMed Articles listed on BioPortfolio]

Correction: A Dynamic Finite Element Analysis of Human Foot Complex in the Sagittal Plane during Level Walking.

[This corrects the article on p. e79424 in vol. 8.].

Using a Combination of Intralaminar and Pedicular Screw Constructs for Enhancement of Spinal Stability and Maintenance of Correction in Patients With Sagittal Imbalance: Clinical Applications and Finite Element Analysis.

Case series and finite element analysis OBJECTIVE:: To report the clinical results of using intralaminar screw-rod (ILS) constructs as supplements to regular pedicle screw (PS) constructs in "high ris...

Analysis of a laminar-flow diffusional mixer for directed self-assembly of liposomes.

The present work describes the operation and simulation of a microfluidic laminar-flow mixer. Diffusive mixing takes place between a core solution containing lipids in ethanol and a sheath solution co...

3D reconstruction of bony elements of the knee joint and finite element analysis of total knee prosthesis obtained from the reconstructed model.

Two separate themes are presented in this paper.

Stress distribution of oval and circular fiber posts in amandibular premolar: a three-dimensional finite element analysis.

The aim of the present study was to evaluate the effects of posts with different morphologies on stress distribution in an endodontically treated mandibular premolar by using finite element models (FE...

Clinical Trials [2436 Associated Clinical Trials listed on BioPortfolio]

Characterization of Skeletal Muscle Using Magnetic Resonance Elastography (MRE)

The goal of this proposal is two-fold: (1) to further develop and validate a technology, magnetic resonance elastography (MRE), for quantitatively imaging mechanical properties and tension...

The Effect of Custom-Made Biomechanical Perturbation Platform on Kinetics, Kinematics and Electromyography in Healthy Subjects

Introduction: Kinetic, kinematic and electromyographic activity of the lower limb have been shown to be influenced by various footwear-generated biomechanical manipulations (e.g. soles. In...

Bone Properties in Hypoparathyroidism: Effects of PTH

Whereas much information is known about the properties of bone in primary hyperparathyroidism, a disorder of parathyroid hormone (PTH) excess, virtually nothing is known about the skeleton...

A Comparison of Sequential Compression Devices and Foot Pumps in the Obstetric Population

The researchers at Johns Hopkins University believe that the foot pump will be superior to sequential compression devices in comfort and patient compliance which may increase provider effo...

A Prospective, Multi-center Trial to Assess an Everolimus-Eluting Coronary Stent System (PROMUS Element™)

Compile acute (30-day) clinical outcomes data and 9-month angiographic and intravascular ultrasound (IVUS) data for the PROMUS Element™ Everolimus- Eluting Coronary Stent System in the t...

Medical and Biotech [MESH] Definitions

A computer based method of simulating or analyzing the behavior of structures or components.

Comparison of various psychological, sociological, or cultural factors in order to assess the similarities or diversities occurring in two or more different cultures or societies.

Discrete segments of DNA which can excise and reintegrate to another site in the genome. Most are inactive, i.e., have not been found to exist outside the integrated state. DNA transposable elements include bacterial IS (insertion sequence) elements, Tn elements, the maize controlling elements Ac and Ds, Drosophila P, gypsy, and pogo elements, the human Tigger elements and the Tc and mariner elements which are found throughout the animal kingdom.

Identification and measurement of ELEMENTS and their location based on the fact that X-RAYS emitted by an element excited by an electron beam have a wavelength characteristic of that element and an intensity related to its concentration. It is performed with an electron microscope fitted with an x-ray spectrometer, in scanning or transmission mode.

Copies of transposable elements interspersed throughout the genome, some of which are still active and often referred to as "jumping genes". There are two classes of interspersed repetitive elements. Class I elements (or RETROELEMENTS - such as retrotransposons, retroviruses, LONG INTERSPERSED NUCLEOTIDE ELEMENTS and SHORT INTERSPERSED NUCLEOTIDE ELEMENTS) transpose via reverse transcription of an RNA intermediate. Class II elements (or DNA TRANSPOSABLE ELEMENTS - such as transposons, Tn elements, insertion sequence elements and mobile gene cassettes of bacterial integrons) transpose directly from one site in the DNA to another.

Search BioPortfolio: