Advertisement
Advertise here Publish your press releases here Sponsor BioPortfolio
Follow us on Twitter Sign up for daily news and research emails Contributors wanted

Coexpression of bile salt hydrolase gene and catalase gene remarkably improves oxidative stress and bile salt resistance in Lactobacillus casei.

05:46 EDT 21st April 2014 | BioPortfolio

Summary of "Coexpression of bile salt hydrolase gene and catalase gene remarkably improves oxidative stress and bile salt resistance in Lactobacillus casei."

Lactic acid bacteria (LAB) encounter various types of stress during industrial processes and gastrointestinal transit. Catalase (CAT) and bile salt hydrolase (BSH) can protect bacteria from oxidative stress or damage caused by bile salts by decomposing hydrogen peroxide (H(2)O(2)) or deconjugating the bile salts, respectively. Lactobacillus casei is a valuable probiotic strain and is often deficient in both CAT and BSH. In order to improve the resistance of L. casei to both oxidative and bile salts stress, the catalase gene katA from L. sakei and the bile salt hydrolase gene bsh1 from L. plantarum were coexpressed in L. casei HX01. The enzyme activities of CAT and BSH were 2.41 μmol H(2)O(2)/min/10(8) colony-forming units (CFU) and 2.11 μmol glycine/min/ml in the recombinant L. casei CB, respectively. After incubation with 8 mM H(2)O(2), survival ratio of L. casei CB was 40-fold higher than that of L. casei CK. Treatment of L. casei CB with various concentrations of sodium glycodeoxycholate (GDCA) showed that ~10(5) CFU/ml cells survived after incubation with 0.5% GDCA, whereas almost all the L. casei CK cells were killed when treaded with 0.4% GDCA. These results indicate that the coexpression of CAT and BSH confers high-level resistance to both oxidative and bile salts stress conditions in L. casei HX01.

Affiliation

Key Laboratory of Functional Dairy of Ministry of Education of the People's Republic of China & Municipal Government of Beijing, College of Food Science & Nutritional Engineering, China Agricultural University, 17 Qing Hua East Road, Hai Dian District, Be

Journal Details

This article was published in the following journal.

Name: Journal of industrial microbiology & biotechnology
ISSN: 1476-5535
Pages:

Links

PubMed Articles [10869 Associated PubMed Articles listed on BioPortfolio]

Cloning and analysis of bile salt hydrolase genes from Lactobacillus plantarum CGMCC No. 8198.

Genes coding for bile salt hydrolase of Lactobacillus plantarum CGMCC 8198, a novel probiotic strain isolated from silage, were identified, analyzed and cloned. L. plantarum strongly resisted the inhi...

Cloning a glutathione peroxidase gene from Nelumbo nucifera and enhanced salt tolerance by overexpressing in rice.

A full-length cDNA clone encoding an 866 bp-length glutathione peroxidase protein (NnGPX) was isolated from lotus (Nelumbo nucifera L.). The deduced amino acid sequence of the NnGPX gene had signific...

A method for molecular analysis of catalase gene diversity in seawater.

Catalase plays an important role in the metabolism of marine bacteria and has potential impact on the marine environment. Four PCR primers were designed to amplify the catalase gene fragments in marin...

Antibiotic growth promoters enhance animal production by targeting intestinal bile salt hydrolase and its producers.

The growth-promoting effect of antibiotic growth promoters (AGPs) was correlated with the decreased activity of bile salt hydrolase (BSH), an intestinal bacteria-produced enzyme that exerts negative i...

Analysis of regulatory networks constructed based on gene coexpression in pituitary adenoma.

Gene coexpression patterns can reveal gene collections with functional consistency. This study systematically constructs regulatory networks for pituitary tumours by integrating gene coexpression, tra...

Clinical Trials [1525 Associated Clinical Trials listed on BioPortfolio]

Genomic Structural Variation in Cancer Susceptibility

This study will look for new types of gene changes that may be related to cancer in some patients. Some gene changes (mutations) are passed on from parents to offspring (child). Other gene...

Gene Therapy in Treating Patients With Cancer of The Liver

RATIONALE: Inserting the p53 gene into a person's tumor may improve the body's ability to fight liver cancer. PURPOSE: Phase I trial to study the effectiveness of gene therapy with the p5...

Phase I Study of Ex Vivo Liver-Directed Gene Therapy for Familial Hypercholesterolemia

OBJECTIVES: I. Develop an approach for treating patients with homozygous familial hypercholesterolemia using gene therapy with autologous hepatocytes transduced with a normal low-density...

A Novel Mutation of the Spectrin Gene

The purpose of this study is to find a gene or its mutation (an altered gene) that puts individuals at risk for developing HE or HPP.

Gene Therapy in Treating Patients With Recurrent Malignant Gliomas

RATIONALE: Inserting the gene for adenovirus p53 into a person's tumor may improve the body's ability to fight cancer. PURPOSE: Phase I trial to study the effectiveness of gene therapy in...

Medical and Biotech [MESH] Definitions

The number of copies of a given gene present in the cell of an organism. An increase in gene dosage (by GENE DUPLICATION for example) can result in higher levels of gene product formation. GENE DOSAGE COMPENSATION mechanisms result in adjustments to the level GENE EXPRESSION when there are changes or differences in gene dosage.

Techniques to alter a gene sequence that result in an inactivated gene, or one in which the expression can be inactivated at a chosen time during development to study the loss of function of a gene.

The GENETIC RECOMBINATION of the parts of two or more GENES resulting in a gene with different or additional regulatory regions, or a new chimeric gene product. ONCOGENE FUSION includes an ONCOGENE as at least one of the fusion partners and such gene fusions are often detected in neoplastic cells and are transcribed into ONCOGENE FUSION PROTEINS. ARTIFICIAL GENE FUSION is carried out in vitro by RECOMBINANT DNA technology.

The introduction of functional (usually cloned) GENES into cells. A variety of techniques and naturally occurring processes are used for the gene transfer such as cell hybridization, LIPOSOMES or microcell-mediated gene transfer, ELECTROPORATION, chromosome-mediated gene transfer, TRANSFECTION, and GENETIC TRANSDUCTION. Gene transfer may result in genetically transformed cells and individual organisms.

Techniques used to add in exogenous gene sequence such as mutated genes; REPORTER GENES, to study mechanisms of gene expression; or regulatory control sequences, to study effects of temporal changes to GENE EXPRESSION.

Search BioPortfolio: