CMOS Imaging of Pin-Printed Xerogel-Based Luminescent Sensor Microarrays.

09:06 EDT 23rd October 2014 | BioPortfolio

Summary of "CMOS Imaging of Pin-Printed Xerogel-Based Luminescent Sensor Microarrays."

We present the design and implementation of a luminescence-based miniaturized multisensor system using pin-printed xerogel materials which act as host media for chemical recognition elements. We developed a CMOS imager integrated circuit (IC) to image the luminescence response of the xerogel-based sensor array. The imager IC uses a 26 × 20 (520 elements) array of active pixel sensors and each active pixel includes a high-gain phototransistor to convert the detected optical signals into electrical currents. The imager includes a correlated double sampling circuit and pixel address/digital control circuit; the image data is read-out as coded serial signal. The sensor system uses a light-emitting diode (LED) to excite the target analyte responsive luminophores doped within discrete xerogel-based sensor elements. As a prototype, we developed a 4 × 4 (16 elements) array of oxygen (O2) sensors. Each group of 4 sensor elements in the array (arranged in a row) is designed to provide a different and specific sensitivity to the target gaseous O2 concentration. This property of multiple sensitivities is achieved by using a strategic mix of two oxygen sensitive luminophores ([Ru(dpp)3](2+) and ([Ru(bpy)3](2+)) in each pin-printed xerogel sensor element. The CMOS imager consumes an average power of 8 mW operating at 1 kHz sampling frequency driven at 5 V. The developed prototype system demonstrates a low cost and miniaturized luminescence multisensor system.

Affiliation

Journal Details

This article was published in the following journal.

Name: IEEE sensors journal
ISSN: 1530-437X
Pages: 1824-1832

Links

PubMed Articles [18838 Associated PubMed Articles listed on BioPortfolio]

Contact CMOS imaging of gaseous oxygen sensor array.

We describe a compact luminescent gaseous oxygen (O2) sensor microsystem based on the direct integration of sensor elements with a polymeric optical filter and placed on a low power complementary meta...

A 256 pixel magnetoresistive biosensor microarray in 0.18μm CMOS.

Magnetic nanotechnologies have shown significant potential in several areas of nanomedicine such as imaging, therapeutics, and early disease detection. Giant magnetoresistive spin-valve (GMR SV) senso...

Enhanced Performance from a Hybrid Quenchometric Deoxyribonucleic Acid Silica Xerogel Gaseous Oxygen Sensing Platform.

A complex of salmon milt deoxyribonucleic acid (DNA) and the cationic surfactant cetyltrimethylammonium (CTMA) forms an organic-soluble biomaterial that can be readily incorporated within an organical...

LumiConSense: A Transparent, Flexible, and Scalable Thin-Film Sensor.

The LumiConSense sensor employs a thin luminescent-concentrator film, which allows lensless multifocal imaging and depth estimation at interactive rates.

An RF Energy Harvester System Using UHF Micropower CMOS Rectifier Based on a Diode Connected CMOS Transistor.

This paper presents a new type diode connected MOS transistor to improve CMOS conventional rectifier's performance in RF energy harvester systems for wireless sensor networks in which the circuits are...

Clinical Trials [2423 Associated Clinical Trials listed on BioPortfolio]

An Inpatient Evaluation of Six-Day Subcutaneous Glucose Sensor Performance

The purpose of this study is to assess the performance of the subcutaneous glucose sensor over an extended sensor life. The sensor is currently approved for 3 days of use and this study wi...

New Glucose Sensor Pediatric

The purpose of this study is to assess performance of a new subcutaneous glucose sensor over a seven day sensor life when used with currently marketed Medtronic Diabetes devices. In additi...

APPROPRIATE - Rate Adaptive Pacing Sensor

The APPROPRIATE study will compare differences in functional capacity (peak VO2) between chronotropically incompetent patients randomized to receive rate responsive pacing driven by either...

Urinary Sensor for Cystourethrography

Evaluation of urinary sensor that will be activated by the urine during voiding cystourethrography in pediatric patients

Diabetes Exercise and Lifestyle Trial

The objective of this study is to determine the effects of supervised combined aerobic and resistance training, and the effects of stage-matched written materials delivered by mail or inte...

Medical and Biotech [MESH] Definitions

Techniques using light resulting from PHYSICAL LUMINESCENCE emitted by LUMINESCENT PROTEINS and LUMINESCENT AGENTS.

The use of molecularly targeted imaging probes to localize and/or monitor biochemical and cellular processes via various imaging modalities that include RADIONUCLIDE IMAGING; ULTRASONOGRAPHY; MAGNETIC RESONANCE IMAGING; fluorescence imaging; and MICROSCOPY.

Compound such as LUMINESCENT PROTEINS that cause or emit light (PHYSICAL LUMINESCENCE).

Measurement of light resulting from PHYSICAL CHEMILUMINESCENCE such as from LUMINESCENT PROTEINS and LUMINESCENT AGENTS.

The use of diffusion ANISOTROPY data from diffusion magnetic resonance imaging results to construct images based on the direction of the faster diffusing molecules.

Search BioPortfolio:
Loading
Advertisement

Relevant Topic

Diagnostics
Latest News Clinical Trials Research Drugs Reports Corporate
A diagnostic test is any kind of medical test performed to aid in the diagnosis or detection of disease. For example: to diagnose diseases to measure the progress or recovery from disease to confirm that a person is free from disease Clin...

Advertisement

Searches Linking to this Article