Advertisement
Advertise here Publish your press releases here Sponsor BioPortfolio
Follow us on Twitter Sign up for daily news and research emails Contributors wanted

A Pilot Study Evaluating 18F-L-Thymidine (FLT) PET Imaging in Children With Gliomas

11:22 EDT 24th July 2014 | BioPortfolio

Summary

Background:

- Children with brain tumors often have magnetic resonance imaging (MRI) scans to see if the tumor has responded to therapy or to see if the tumor has grown. Sometimes, it is difficult to tell if the scan is abnormal because of tumor size or shape, swelling, scar tissue, or dead tissue. Because brain tumor biopsies require surgery, researchers are looking for more noninvasive ways of evaluating brain tumors.

- Positron emission tomography (PET) scans use a radioactive sugar known as 18F-FDG to try to determine if a tumor is active or not. Active tumors generally take up more sugar than the surrounding tissue, but because normal brain tissue uses the same sugar as brain tumors, it is then difficult to tell if tumor tissue is taking up sugar or not. A different radioactive agent, 18F-FLT, is now being studied in some adults with different kinds of tumors. Researchers are interested in determining whether it is possible to use this agent as a marker of tumor activity in children.

Objectives:

- To determine the safety and effectiveness of 18F-FLT for pediatric glioma scans.

- To compare the results of 18F-FLT studies with studies using the radioactive agents 18F-FDG and 1H-MRSI.

Eligibility:

- Children less than 18 years of age who are having radiation therapy to treat malignant gliomas.

Design:

- Participants will have scanning tests before radiation therapy, 1 to 3 weeks after radiation therapy, and if researchers suspect that the tumor is growing.

- This study will involve three separate imaging tests (1H-MRSI, 18F-FDG PET, and 18F-FLT PET).

- Proton spectroscopy (1H-MRSI) is a procedure that is similar to MRI and is performed in the same scanner as an MRI. Because this scan is long (2-3 hours), most children will receive medications from an anesthesiologist so that they can sleep through the procedure.

- Within 2 weeks of the 1H-MRSI scan, participants will have the PET scans with both the standard contrast agent (18F-FDG) and the experimental agent (18F-FLT). These scans will last approximately 1 hour each.

Description

BACKGROUND:

- A limitation of current investigational therapy for patients with brain tumors is assessment of response.

- (18)F-FDG PET is commonly used to assess tumor metabolism. However, normal brain uses glucose as an energy source, resulting in increased background FDG uptake, which confounds results and makes it difficult to distinguish normal from neoplastic activity.

- Newer imaging techniques that noninvasively assess metabolic and physiologic characteristics of brain tumor tissue are being developed to identify biomarkers of clinical efficacy in trials of new molecularly targeted agents.

- (18)F-fluorothymidine (FLT) is a PET radiopharmaceutical that is taken up by proliferating cells and may therefore serve as a surrogate marker of early response or lack of response to treatment.

- This study will prospectively evaluate (18)F-FLT in children undergoing radiation therapy for gliomas.

OBJECTIVES:

Primary objectives:

- Determine the feasibility of (18)F-FLT PET imaging in pediatric patients with malignant gliomas

- Determine the ability of (18)F-FLT PET imaging to detect treatment changes in pediatric patients with malignant gliomas undergoing radiation therapy

Secondary objectives:

- Determine the safety and toxicity profile of PET imaging using (18)F-FLT in pediatric patients with malignant gliomas

- To correlate changes in (18)F-FLT PET before and after radiation with outcome (12 month PFS)

- To compare the performance of (18)F-FLT-PET to that of MR perfusion, proton magnetic resonance spectroscopy (1H-MRSI) and (18)F-FDG PET in prediction of tumor response, time to progression and overall survival time.

ELIGIBILITY:

- Children less than 18 years of age with malignant gliomas for whom radiation therapy is prescribed.

- Adequate organ function defined as:

- Hepatic: SGOT, SGPT less than 5 times the ULN; total and direct bilirubin less than or equal to 2 times the ULN

- Renal: Serum creatinine must be within the upper limit of normal values

- Fasting serum glucose less than 150 mg/dL

- Negative serum or urine pregnancy test in females of childbearing potential

DESIGN:

-Patients will undergo MRI (with 1H-MRSI and perfusion), (18)F-FLT PET and (18)F-FDG PET within 2 weeks of each other at the following time points: pre-radiation therapy, 1-3 weeks post-radiation therapy, and at the time of suspected progression.

Study Design

Time Perspective: Prospective

Conditions

Ependymoma

Location

National Institutes of Health Clinical Center, 9000 Rockville Pike
Bethesda
Maryland
United States
20892

Status

Recruiting

Source

National Institutes of Health Clinical Center (CC)

Results (where available)

View Results

Links

Clinical Trials [14 Associated Clinical Trials listed on BioPortfolio]

Dose-Dense Temozolomide + Lapatinib for Recurrent Ependymoma

The goal of this clinical research study is to learn if lapatinib when given in combination with temozolomide can help to control ependymoma that has come back after treatment. The safety...

Observing Young Patients With Ependymoma Undergoing Standard Combination Chemotherapy

RATIONALE: Gathering information about how young patients with ependymoma respond to standard combination chemotherapy and learning about the long-term effects of this treatment may help d...

Etoposide in Treating Young Patients With Relapsed Ependymoma

RATIONALE: Drugs used in chemotherapy, such as etoposide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. PURPOSE:...

High-Dose Methotrexate in Treating Young Patients With Residual Ependymoma

RATIONALE: Drugs used in chemotherapy, such as methotrexate, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. PURPO...

Adult Intracranial Ependymoma

Adult intracranial ependymoma is a relatively rare brain tumour entity, accounting for 2-5% of all intracranial neoplasms. The pertinent prognostic factors as well as the pattern of recurr...

PubMed Articles [28 Associated PubMed Articles listed on BioPortfolio]

Distinct tumorigenic mechanisms underlie ependymoma subtypes.

C11ORF95-RELA fusions are common in one ependymoma subtype, but another has no recurrent mutations.

Multiple spinal cord recurrences of an intracranial ependymoma after 14 years.

Ependymoma can spread via cerebrospinal fluid, but late spinal recurrences of intracranial tumor are very rare. We describe a case of a 33-year-old male who presented with multiple, delayed, recurrent...

Supratentorial ependymoma with glial component of two different histologies and neuropil-like islands: a case report.

Glioneuronal tumors with neuropil-like islands (GTNIs) are a basically infiltrating astrocytoma or mixed oligoastrocytoma, containing large neuropil-like islands (NIs). Recently, we experienced a pecu...

Extra and intramedullary anaplastic ependymoma in thoracic spinal cord.

Spinal ependymoma occupies 40-60% of primary spinal cord tumors and has a feature of intramedullary tumor. The tumor most commonly arises from the central canal of the spinal cord, the conus medullari...

Extraneural metastasis of ependymoma in the cauda equina.

We report a rare case of extraneural metastasis of spinal ependymoma that developed over a very long period. A 28-year-old man underwent surgery for ependymoma in the cauda equina. After he experience...

Medical and Biotech [MESH] Definitions

Benign and malignant central nervous system neoplasms derived from glial cells (i.e., astrocytes, oligodendrocytes, and ependymocytes). Astrocytes may give rise to astrocytomas (ASTROCYTOMA) or glioblastoma multiforme (see GLIOBLASTOMA). Oligodendrocytes give rise to oligodendrogliomas (OLIGODENDROGLIOMA) and ependymocytes may undergo transformation to become EPENDYMOMA; CHOROID PLEXUS NEOPLASMS; or colloid cysts of the third ventricle. (From Escourolle et al., Manual of Basic Neuropathology, 2nd ed, p21)

Benign and malignant intra-axial tumors of the MESENCEPHALON; PONS; or MEDULLA OBLONGATA of the BRAIN STEM. Primary and metastatic neoplasms may occur in this location. Clinical features include ATAXIA, cranial neuropathies (see CRANIAL NERVE DISEASES), NAUSEA, hemiparesis (see HEMIPLEGIA), and quadriparesis. Primary brain stem neoplasms are more frequent in children. Histologic subtypes include GLIOMA; HEMANGIOBLASTOMA; GANGLIOGLIOMA; and EPENDYMOMA.

Benign and malignant neoplasms which occur within the substance of the spinal cord (intramedullary neoplasms) or in the space between the dura and spinal cord (intradural extramedullary neoplasms). The majority of intramedullary spinal tumors are primary CNS neoplasms including ASTROCYTOMA; EPENDYMOMA; and LIPOMA. Intramedullary neoplasms are often associated with SYRINGOMYELIA. The most frequent histologic types of intradural-extramedullary tumors are MENINGIOMA and NEUROFIBROMA.

Glioma derived from ependymocytes that tend to present as malignant intracranial tumors in children and as benign intraspinal neoplasms in adults. It may arise from any level of the ventricular system or central canal of the spinal cord. Intracranial ependymomas most frequently originate in the FOURTH VENTRICLE and histologically are densely cellular tumors which may contain ependymal tubules and perivascular pseudorosettes. Spinal ependymomas are usually benign papillary or myxopapillary tumors. (From DeVita et al., Principles and Practice of Oncology, 5th ed, p2018; Escourolle et al., Manual of Basic Neuropathology, 2nd ed, pp28-9)

Intracranial tumors originating in the region of the brain inferior to the tentorium cerebelli, which contains the cerebellum, fourth ventricle, cerebellopontine angle, brain stem, and related structures. Primary tumors of this region are more frequent in children, and may present with ATAXIA; CRANIAL NERVE DISEASES; vomiting; HEADACHE; HYDROCEPHALUS; or other signs of neurologic dysfunction. Relatively frequent histologic subtypes include TERATOMA; MEDULLOBLASTOMA; GLIOBLASTOMA; ASTROCYTOMA; EPENDYMOMA; CRANIOPHARYNGIOMA; and choroid plexus papilloma (PAPILLOMA, CHOROID PLEXUS).

More From BioPortfolio on "A Pilot Study Evaluating 18F-L-Thymidine (FLT) PET Imaging in Children With Gliomas"

Search BioPortfolio:

Relevant Topics

Pediatrics · Latest News · Clinical Trials · Research · Drugs · Reports · Corporate
Pediatrics is the general medicine of childhood. Because of the developmental processes (psychological and physical) of childhood, the involvement of parents, and the social management of conditions at home and at school, pediatrics is a specialty. With...

Radiology · Latest News · Clinical Trials · Research · Drugs · Reports · Corporate
Radiology is the branch of medicine that studies imaging of the body; X-ray (basic, angiography, barium swallows), ultrasound, MRI, CT and PET. These imaging techniques can be used to diagnose, but also to treat a range of conditions, by allowing visuali...

Advertisement
Advertisement